
The Evolution of the C++ Memory Model
Jim Eckerlein

Technical University of Munich
jim.eckerlein@tum.de

Abstract
We present the past and current state of the C++ Mem-
ory Model. Compared to other language features, the
memory model is especially hard to comprehend. As we
want to address a wide audience, no prior knowledge
about memory models is generally assumed. Instead,
this work starts by motivating the need for a memory
model. We then advance to describe how this concept
is realized in C++ and how it evolves throughout the
standard’s revisions.

Keywords C++, Memory Model, Atomic Operations,
Memory Order

1 Introduction
A memory model has two tasks: Firstly, it defines what
units of memory the model is arguing about. C++ calls
this units memory locations. Since their exact definition
is less interesting, we defer it to the end of this work.
Intuitively, each variable is stored in its unique memory
location, which in turn is made up of one or more bytes.
Secondly - which makes up the interesting part of a
memory model, is how a program interacts with these
memory units at runtime. The latter’s definition espe-
cially becomes non-trivial in the existence of multiple
threads.

2 Motivation for Memory Models
Compilers are free to transform the source code to im-
prove speed or reduce memory footprint, as long as
they maintain the illusion that the original program
ran. This property of code transformations is provable
in a single-threaded program because compilers know
when a program can access specific memory locations.
However, this curtain of illusion is cast aside when us-
ing a debugger to step through a compiled program.
Code segments can be observed to run in a different
order than authored, and variables are missing or are
being introduced. We want to provide two examples of
such source code transformations:

Originally
a = 2;
b = "Hello world";
a = 42;

Optimized a = 42;
b = "Hello world";

The first example shows two writes to a variable.
Since no read occurs between the writes, the leading
write operation can be omitted entirely. The running
program is not able to detect the lacking write.

Originally
for (int i = 0; i < N; ++i) {

x += f(i);
}

Optimized

register int r1 = x;
for (int i = 0; i < N; ++i) {

r1 += f(i);
}
x = r1;

The second example consists of a loop repeatedly
accessing the same accumulator variable. In order to
reduce data traffic to the cache, the compiler will allo-
cate a register serving as an accumulator instead. After
the loop finishes, the register content is flushed to the
actual variable.
Similar reasoning applies to the hardware, as it does

not run instructions in the exact order as emitted by
the compiler. Various optimizations such as branch pre-
diction or store buffering will result in instruction re-
ordering effects. To a single-threaded program, these
effects will always be invisible. One relatively intuitive
hardware optimization is the store buffer. Because store
operations require more work than load operations,
the memory unit queues them up in a store buffer. Ex-
ample: A processor executes a program P first writing
to a location w and than reading from another loca-
tion r. The write operation is buffered, and then r is
read from memory. Since the store buffer is processed
asynchronously, the value to w is written to the actual
memory location, possibly long after r is read. Thus the
processor did not execute the program P but another
program in which both operations are swapped. In gen-
eral, any deviation in the execution from the originally
authored program either by the compiler, processor,

1



Jim Eckerlein

cache, or any other component can be reasoned about
as reorderings at source code level.
As mentioned above, these transformations are un-

noticeable to the programmer in a single-threaded pro-
gram. It is only when multiple threads access common
data that this illusion can no longer be maintained. Es-
sentially, a thread accessing another thread’s data with-
out any precautions will experience something similar
to debugging a program, such as witnessing code seg-
ments running out of order or seeing unfinished writes.
For example, consider the following two threads exe-
cuting the respectively given operations:

Thread 1 Thread 2
x ≔ 42 if (a)
a ≔ 1 r ≔ x

Thread 1 is supposed to generate some data into x
and to signal completion by setting y to one. Thread 2
periodically tests y and accesses x upon success. How-
ever, due to reordering by the compilers or out-of-order
execution of machine instructions, an execution might
be:

Thread 1 Thread 2
x ≔ 42 r≔ x
a ≔ 1 if (a) { }

The guarding mechanism of a is now bypassed, and
if thread 2 executes between thread 1’s operations, it
reads data it was not supposed to. This scenario could
be realized by both threads running truly concurrent
on a multi-core device or by thread 1 being preemp-
tively interrupted. The programmer’s responsibility is
to enforce the intended execution by issuing ordering
constraints.

3 C++98
C++ inherited a single-threaded standard from C. Like
in C [9], there is no notion of multithreading in the ISO
standard ratified in 1998. For a program to use multi-
ple, communicating threads, hardware- and platform-
dependent APIs like POSIX had to be used. Compilers
were unaware of those operations, so programmers in-
serted assembly directives to ensure correct memory
ordering. With time it became apparent that threads
and their communication cannot be implemented as a
library [4], thus making it the standard’s responsibility
to define a proper memory model.

4 C++11
The C++ ISO standard ratified in 2011, known as C++11,
introduced a memory model fit for multi-threaded pro-
grams. It did so building on the knowledge gained in
defining a memory model for Java 5.0 [12]. To realize
this, an atomic library was introduced that includes the
type template std::atomic<> with operations that
could specify ordering constraints:

• memory_order_relaxed
• memory_order_consume
• memory_order_acquire
• memory_order_release
• memory_order_acq_rel
• memory_order_seq_cst

In program diagrams we introduce a special syntax.
The x ≔mo syntax describes an store operation to x
where memory ordering is constraint bymo, which can
be either rxd (relaxed), rel (release), or sc (sequentially
consistent). The xmo syntax describes a read from a
variable x where memory ordering is constraint by mo,
which can be either rxd (relaxed), acq (acquire), con (co-
sume), or sc (sequentially consistent). Some operations
combine reading and writing. They can be agumented
by the constraints rxd (relaxed), acqrel (acquire-release),
or sc (sequentially consistent).

4.1 Atomics
We partition accesses into two categories: Data access
and atomic access. Data accesses are treated as regu-
lar pre-C++11 accesses. When multiple threads read
from and write to the exact memory location, partially
written values can be read. On the other hand, atomic
accesses ensure atomicity; they are complete in a single
step relative to other threads. In reality, data accesses
can be non-atomic for many reasons. For example, a
processor could implement a write operation as multi-
ple instructions. It could depend on whether the mem-
ory location is aligned, where the definition for cor-
rect alignment depends on the architecture. Due to a
hierarchical cache, writes can also take some time to
propagate into the topmost cache level. A subset of the
API for atomics is shown in the following listing:

2



The Evolution of the C++ Memory Model

1 template <class T> struct atomic {
2 T load(std :: memory_order mo);
3 void store(T value , std :: memory_order

mo);
4 bool compare_exchange_strong (T&

expected , T desired ,
std :: memory_order mo);

5 bool compare_exchange_weak (T& expected ,
T desired , std :: memory_order mo);

6 };

Listing 1. Atomics API

To avoid code clutteringwith calls to load and store,
C++ overloads the casting operator and the assignment
operator. The memory order argument in all functions
defaults to sequential consistency. The type argument
to std::atomic<> must be trivially copyable, copy
constructible, and copy assignable. The atomic variable
as a whole then still is neither copyable nor moveable.
While this still allows whole structures to be atomic, the
C++ standard does not guarantee that such constructs
are lock-free. To realize these template instantiations,
the standard library implementation is allowed to use
mutexes. Since atomics are used to avoid locking mu-
texes, in practice, there are small atomic variables, usu-
ally integers, acting as guards for much more complex
data, which acts as a payload from this point of view.

4.2 Memory Ordering Constraints
The following subsections present all available reorder-
ing constraints. A less strict constraint incurs less run-
time overhead and allows for significant optimization
opportunities by the compiler and processor. A more
stringent constraint states more guarantees, enabling
one to argue about execution order and causality chains.

4.2.1 Acquire and Release Constraints
The unidirectional barriers called acquire and release
restrict memory operations to be moved in only one
direction across the barrier. Release designates a loca-
tion where a thread finishes working on some piece
of shared data and is ready to release its content to
other threads. No operation must be moved after the
barrier. Acquire on the other hand, designates a location
where a thread assumes the ownership for some piece
of shared data. No operation must be moved before the
barrier. The following code illustrates how to use the
unidirectional barriers by fixing the two-thread exam-
ple presented during themotivation of a memorymodel.
We repeat the scenario: Thread 1 generates data into
x and signals completion by setting a to one. Thread 2

waits for data being ready. Again, the if-statement and
read from x in Thread 2 are free to be reordered.

Thread 1 Thread 2
x≔ 42 if (a)
a≔ 1 r ≔ x

Now we make a an atomic (implicit in the diagram)
and augment the stores to a and loads from a with
constraints:

Thread 1 Thread 2
x≔ 42 if (aacq)
a≔rel 1 r ≔ x

This prohibits the data generation phase in thread 1
to leak beyond the release and the data-gathering phase
in thread 2 to leak before the acquisition. As a result,
the problematic reordering of the two statements in
thread 2 is now no longer possible. Practical C++ code
would look like this:

1 # include <atomic >
2
3 // Globally shared data:
4 std :: atomic <int > guard;
5 std :: vector <double > data;
6
7 // Thread 1:
8 data = generate ();
9 guard.store (1, std :: memory_order_release );
10
11 // Thread 2:
12 for (;;) {
13 if

(guard.load(std :: memory_order_acquire )
== 1) {

14 process (data);
15 }
16 }

Listing 2. Acquire-Release Use Case

A std::atomic type also provides functions that
combine reading and writing into a single atomic op-
eration, meaning that relative to other threads, such
an operation must always be complete in a single step.
Memory reordering around such operations can be con-
trolled by either a relaxed, acquire-release, or sequen-
tially consistent constraint. Examples of such functions
are fetch_add() and compare_exchange().

3



Jim Eckerlein

4.2.2 Consume and Release Constraints
The comsume constraint is a barrier that is weaker than
the acquire barrier. Whereas an acquire constraint for-
bids any operation from being reordered before the
barrier, a consume constraint lifts this restriction except
for operations depending on the atomic value.

1 a≔ 42
2 b≔ xcon
3 print(a)
4 c≔ a + b
5 print(c)

The bold operation represents the barrier imposed
through the load operation augmented by a consume
constraint. The compiler can move operation three
above the barrier because a does not depend on x. This
is unlike the acquire ordering, which would disallow
this potential optimization. However, operation four
cannot be moved before the barrier. x is said to carry a
dependency through b to c. By transitivity, operation
five can also not be moved before the barrier.
To give the programmer fine-grained control over de-

pendency chains originating from consume operations,
C++ defines the attribute [[carries_dependency]]
and the function std::kill_dependency(). Perfor-
mance gains can be observed on weakly ordered archi-
tectures (Refer to section 10) because compilers insert
fewer memory fence instructions. That is because such
processors do not reorder instructions working on reg-
isters before the register content is loaded, thus having
a built-in notion of data-dependencies. As a production
example, Linux employs consume semantics in read-
copy-update (RCU) implementations, although not by
using C++11.

4.2.3 Sequentially Consistent Constraint
Sequential consistency [11] is the strictest constraint.
A program using exclusively sequentially consistent
constraints will always run as if only one thread is run-
ning at a time. When viewed in isolation, each thread
executes the program in authored order.
Sequentially consistency constraints insert bidirec-

tional barriers. No other operation can propagate across
the barrier either way. In addition, the standard requires
that an atomic only accessed with the sequentially con-
sistent constraint must experience the same sequence
of values throughout the program’s runtime in every
thread. This example demonstrates the effect of this
property:

Thread 1 x ≔rel 1
Thread 2 y≔rel 1

Thread 3
while (yacq = 0) { }
if (xacq)
++zacqrel

Thread 4
while (xacq = 0) { }
if (yacq)
++zacqrel

Thread 3 waits for 𝑦 = 1. When it does, it tests 𝑥 = 1.
Upon success, z increments. Thread 4 behaves anti-
symmetrically in that x and y exchange roles. Acquire
and release constraints are employed. Thus, two threads
can experience different modification orders of vari-
ables. The outcome of z not being incremented by either
thread is thus possible. The scenario occurs if thread 3
first saw 𝑥 = 1 followed by 𝑦 = 1, while thread 4 ex-
perienced the opposite order of events. The order of
changes to variables does not need to be consistent
across threads. To enforce this property, sequentially
consistent ordering constraints must be used in all cases.
This program will always end with 𝑧 = 1:

Thread 1 x≔sc 1
Thread 2 y≔sc 1

Thread 3
while (ysc = 0) { }
if (xsc)
++zsc

Thread 4
while (xsc = 0) { }
if (ysc)
++zsc

4.2.4 Relaxed Constraint
The relaxed constraint imposes no ordering require-
ments. Only the atomicity of each access is guaranteed.
Both the compiler and the processor are free to reorder
such operations. Atomics accessed using relaxed con-
straints are also calledweakly ordered atomics. Use cases
for this type of constraint involve scenarios where the
program does not depend on the current value of the
atomic but employs other usually delayed means of syn-
chronization. In general, designing correct code using
weakly ordered atomics is significantly more complex
than writing lock-free code, which is already a tremen-
dously difficult process.
We want to present automatic reference counting

(ARC) as one use case for relaxed atomics. When re-
taining a reference and the counter is incremented, the
resulting value is not used for further computation. It
turns out that for incrementing the reference counter,

4



The Evolution of the C++ Memory Model

relaxed access suffices. Only when releasing the refer-
ence all prior writes must become visible. By using a
release constraint while decrementing the counter, no
relaxed operation may be reordered afterward.

1 void retain () {
2 count -> fetch_add (1,

std :: memory_order_relaxed );
3 }
4
5 void release () {
6 if (count -> fetch_sub (1,

std :: memory_order_acq_rel ) == 1) {
7 // Deallocation
8 }
9 }

Listing 3. ARC as a use case for relaxed constraints.

4.3 Fences
Fences are synchronization primitives which are not
associated with an atomic variable. Every use of an
atomic load or store can be replaced by fences:

Atomic operation Equivalent using fences
r ≔ aacq r≔ arxd

fenceacq()
r ≔ acon r≔ arxd

fenceacq()
a≔rel r fencerel()

a ≔rxd r
r≔ asc r≔ arxd

fencesc()
a≔sc r fencesc()

a ≔rxd r
Since fences are not associated with specific memory

locations, they have to impose more constraints on
reordering to be able to state at least the same set of
guarantees. A fence is thus more strict than an atomic
operation with the equivalent memory ordering. An
acquire load disallows any subsequent load to be moved
before the barrier, while an acquire fence disallows
any subsequent load to be moved before any preceding
load. A release store disallows any preceding store to be
moved after the barrier, while a release fence disallows
any preceding load to be moved after any subsequent
store. Compared to atomic operations, fences can be a
pessimisation.

4.4 Allowed reorderings
Diagram 1 presents how atomic operations can be re-
ordered with respect to surrounding code based on the

Figure 1. Allowed and prohibited reorderings

given constraints. The strings represent atomic opera-
tions. The arrows show which way surrounding code
can cross the barrier. Crossed arrows negate the permis-
sion. The angular arrows show how atomic operations
may be reordered with respect to themselves.

4.5 Compare-and-swap
The atomic library includes support for compare-and-
swap (CAS), atomically testing a memory location for
a given value. A new value is inserted upon success,
and the expression evaluates truthfully. C++ offers two
flavours, compare_exchange_weak() and compare_-
exchange_strong(). The weak version is allowed to
fail spuriously, allowing for a more efficient implemen-
tation on some architectures. In general, the weak ver-
sion will always be inside a loop. Conversely, the weak
candidate might be preferable when a CAS operation
is inside a loop anyway.

5 C++14
Unlike its preceding revision, C++14 mainly fixed ex-
isting issues rather than introducing new features.

5



Jim Eckerlein

5.1 Prohibiting Out-of-Thin-Air Reads
C++14 now explicitly prohibits a phenomena called out-
of-thin-air reads, or OOTA for short [5, 6]. Under the
effect of speculative execution, OOTA renders programs
unusable that use relaxed accesses to form a causal
cycle, such as this example:

Thread 1 Thread 2
y≔rxd xrxd x ≔rxd yrxd

The problem is when thread 1 speculatively loads
42 into y, followed by thread 2 quickly copying this
value to x. Then, finally, the first thread’s load arrives,
confirming 42 as the correct value for y. Thus nothing
has to be undone. But unfortunately, this execution
injects a value into the execution the program never
calculates.
A proposed solution was to restrict allowed reorder-

ings of relaxed operations, but that would introduce
performance penalties on weakly ordered architectures.
Unfortunately, OOTA is a long-standing problem not
only in C++ but also in Java. C++11 tried to outlaw
OOTA by phrasing the specification accordingly. How-
ever, it turned out to be insufficient. C++14 mitigates
this by replacing the complicated wording with a hand-
waving note that implementations should ensure OOTA
shall happen for such circularly depending values. Mind
that OOTA is fully understood and even less definable
at that time.

6 C++17
Similar to the previous revision, C++17 did not intro-
duce new features to the atomics library.

6.1 Discouriging Consume Semantics
Consume semantics have proved to be difficult to be im-
plemented for both compilers and programmers despite
efforts made to make the constraint more accessible
[14]. C++’s notion of data-dependency is rather clumsy.
Dependency chains are truncated by the compiler at
function boundaries because their implementations
might be unknowable or unmodifiable at compile-time
[13]. To avoid the compiler lifting to acquire seman-
tics, the programmer has to clutter the codebase with
[[carries_dependency]] annotations and calls to
std::kill_dependency(). The semantics have been
revised multiple times [15], but since the debate is still
open and in progress, consume has been declared tem-
porarily discouraged [7].

7 C++20
As of writing this work, C++20 is the latest available
revision. The standard atomic library now supports
floating-point variables used as atomic data.

7.1 Repairing Sequential Consistency
Lahav et al. discovered problems with current compi-
lation schemes on weakly ordered processors when
combining release ordering with sequentially consis-
tent ordering [10]. Such processors might execute the
operations in an order that is not compliant with the
definition of sequential consistency. Enforcing the stan-
dard would introduce overhead and eliminate the mo-
tivation for acquire-release to a significant extent. The
settled approach is to rephrase the standard in a way
that breaks backward compatibility in a few edge cases.

8 Memory Locations
The C++ standard generalizes a device on which a C++
program is executed to an abstract machine. Storage
available to the abstract machine is discretized into cells
called bytes, each one having its own unique address.
Each byte, consisting of a contiguous bit sequence, must
be able to represent each character used in the C++
grammar, as well as any code-unit present in the Uni-
code UTF-8 encoding. The number of bits is accessible
to the programmer at compile-time through the macro
CHAR_BIT. Almost all commercially available hardware
uses 8 bits per byte, although some embedded systems,
especially digital signal processors (DSP), use bytes
wider than 8 bits.
Memory locations are disjoint and contiguous sets

of bytes, each one forming a subset of the available
storage. Memory locations are occupied by objects of
scalar type: int, char, float, double, bool, enumera-
tions, or pointers. In addition, various language features
such as references or virtual functions might occupy
additional memory locations which are not directly
accessible to the programmer.
Integral members of a structure may be decorated

with a bit-length, allowing for fine-grained alignment
control. A consecutive sequence of such decoratedmem-
bers called bit fields forms a single memory location.
Such a sequence may be subdivided using zero-length
bit fields, which act as separators. The boundaries of
subobjects such as members of a structure type or array
elements also act as separators.

6



The Evolution of the C++ Memory Model

1 struct {
2 int a;
3 float b;
4 struct {
5 double c;
6 } s1;
7
8 int b1 : 2;
9 int b2 : 3;
10 int b3 : 0;
11 int b4 : 2;
12 struct {
13 int b5 : 4;
14 } s2;
15 };

Listing 4. Memory Locations

In this structure declaration a, b and c are mapped
onto individual memory locations. Furthermore, the bit
fields b1 and b2 are combined into a single memory
location. b3 acts as a separator. b4 and b5 occupy dif-
ferent memory locations, because one is member of a
suboject.
For the sake of completeness, we want to mention

the fact that there is also an Object Model. Whereas
the memory model defines how objects are mapped
to storage or, in other words space, the object model
defines a mapping of objects to time. It thus specifies
properties such as lifetime and storage duration. We
consider the C++ object model out of scope for this
work.

9 Atomic vs. Volatile
Volatility and atomicity are orthogonal concepts in C++,
contrasting to the languages Java and C#, where the
keyword volatile assumes the role of C++’s keyword
atomic.
The primary motivation of volatile is access to

memory whose values can change at any time without
the program intention. Consequently, reads and writes
from such memory locations are effectively unoptimiz-
able. Furthermore, volatile accesses must not be moved
across neighboring side effects, thus enforcing order-
ing constraints independent of ordering restrictions
imposed by memory barriers. In addition, volatile vari-
ables do not enforce atomicity. Instead, a variable has
to be declared as volatile std::atomic<>. Volatile
variables are thus unsuited for inter-thread communi-
cation.

Load Store
Regular Atomic Regular Atomic

x86 mov mov mov xchg
IA64 ld ld.acq st st.rel; mf

POWER ld
sync; ld;
cmp; bc;
isync

st sync; st

ARM v7 ldr ldr;
dmb str dmb; str;

dmb
ARM v8 ldr ldra str strl
Table 1. Instructions for reodering constraints.

10 Hardware implementation
The concept of memory models originates from the
hardware level. Colossal progress has been made since
the nineties [1–3, 8]. Processors fall somewhere in the
spectrum between being strongly or weakly ordered.
A strongly ordered processor states many guarantees
about out-of-order execution and thus facilitates for-
mal program verification. As an example for a strongly
ordered architecture, x86 does not distinguish between
regular and atomic load instructions. Loading an aligned
32-bit integer is always atomic; it does not have to
be wrapped in a std::atomic<>. Unfortunately, this
implies that non-atomic read operations pay for guar-
antees which are not required for correct execution.
Weakly-ordered processors benefit from lower over-
head, which is a reason for their supremacy in lower-
power devices. Unfortunately, heavyweight fences have
to be used to implement sequentially consistent opera-
tions. An exception is ARM v8, the first architecture to
natively support the C++11 memory model by exposing
load-acquire and store-release instructions.
Table 1 shows which instructions compilers use to

implement atomic load and store operations, as well
as their non-atomic counterparts. Instructions issuing
memory fences are in bold.

7



Jim Eckerlein

11 Conclusion
Every programming language that exposes threads and
allows them to communicate over shared mutable mem-
ory needs to define a memory model. C++11 intro-
duced a memory model to enable programmers to write
portable multithreaded code, supporting both locks in
the form of mutexes and lock-free primitives in the
form of atomics. Only atomic memory is suitable to
coordinate inter-thread communication. Code does not
necessarily run in authored order at runtime due to var-
ious effects resulting from compilation optimizations
and out-of-order execution. This fact only becomes vis-
ible to the programmer when writing multithreaded
programs. To ensure such programs still function valid,
particular constraints have to be inserted, informing
the compiler and the processor about prohibited re-
orderings. Since the memory order affinity of individ-
ual architectures varies wildly, each type of constraint
is a compromise between efficiency and deterministic
behavior. Subsequent C++ revisions repair defects and
improve the definition, mirroring the steady progress
in research and understanding of this complex topic.

References
[1] Sarita Adve. 1993. Designing Memory Consistency Models for

Shared-memory Multiprocessors. University of Wisconsin–
Madison.

[2] Sarita Adve and Kourosh Gharachorloo. 1996. Designing
Memory Consistency Models for Shared-memory Multipro-
cessors: A tutorial. IEEE Computer 29, 12 (1996), 66–76.
https://doi.org/10.1109/2.546611

[3] S.V. Adve andM.D. Hill. 1989.Weak Ordering: A NewDefinition
and Some Implications. Number no. 902 in Computer sciences
technical report. University of Wisconsin-Madison, Computer
Sciences Department. https://books.google.de/books?id=8K
eYPgAACAAJ

[4] Hans-J. Boehm. 2005. Threads Cannot Be Implemented As a
Library. https://web.stanford.edu/class/cs240/readings/p261
-boehm.pdf. Accessed 2022-01-31.

[5] Hans-J. Boehm. 2013. N3710: Specifying the absence of "out
of thin air" results. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/n3710.html. Accessed 2020-12-2.

[6] Hans-J. Boehm. 2013. N3786: Prohibiting "out of thin air"
results in C++14. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/n3786.htm. Accessed 2020-12-2.

[7] Hans-J. Boehm. 2016. P0371R1: Temporarily discourage mem-
ory order consume. http://www.open-std.org/jtc1/sc22/wg2
1/docs/papers/2016/p0371r1.html. Accessed 2020-12-2.

[8] Michel Dubois, Christoph Scheurich, and Faye Briggs. 1998.
Memory Access Buffering in Multiprocessors. ACM Sigarch
Computer Architecture News 14, 320–328. https://doi.org/10.1
145/17356.17406

[9] B.W. Kernighan, D.M. Ritchie, and C.L. Tondo. 1988. The C
Programming Language. Prentice Hall. https://books.google

.de/books?id=161QAAAAMAAJ
[10] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur,

and Derek Dreyer. [n. d.]. Repairing Sequential Consistency
in C/C++11. http://plv.mpi-sws.org/scfix/paper.pdf. Accessed
2020-12-3.

[11] Leslie Lamport. 1979. How to Make a Multiprocessor Com-
puter That Correctly Executes Multiprocess Programs. IEEE
Transactions on Computers C-28 9 (September 1979), 690–691.
https://www.microsoft.com/en-us/research/publication/m
ake-multiprocessor-computer-correctly-executes-multiproc
ess-programs/

[12] Jeremy Manson, William Pugh, and Sarita V. Adve. 2004. The
Java Memory Model. University of Maryland. https://books.
google.de/books?id=kOjzvQAACAAJ

[13] Paul E. McKenney and Lawrence Crowl. 2008. N2643: C++
Data-Dependency Ordering: Function Annotation. http://ww
w.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2643.htm
l. Accessed 2020-12-2.

[14] Paul E. McKenney, Torvald Riegel, Jeff Preshing, Hans Boehm,
Clark Nelson, Olivier Giroux, and Lawrence Crowl. 2016.
P0098R1: Towards Implementation and Use of memory_or-
der_consume. http://www.open-std.org/JTC1/sc22/wg21/do
cs/papers/2016/p0098r1.pdf. Accessed 2020-12-2.

[15] Paul E. McKenney, Michael Wong, Hans Boehm, Jens Maurer,
Jeffrey Yasskin, and JF Bastien. 2016. P0190R2: Proposal for
New memory order consume Definition. http://www.open
-std.org/JTC1/sc22/wg21/docs/papers/2016/p0190r2.pdf.
Accessed 2020-12-2.

8

https://doi.org/10.1109/2.546611
https://books.google.de/books?id=8KeYPgAACAAJ
https://books.google.de/books?id=8KeYPgAACAAJ
https://web.stanford.edu/class/cs240/readings/p261-boehm.pdf
https://web.stanford.edu/class/cs240/readings/p261-boehm.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3710.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3786.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3786.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0371r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0371r1.html
https://doi.org/10.1145/17356.17406
https://doi.org/10.1145/17356.17406
https://books.google.de/books?id=161QAAAAMAAJ
https://books.google.de/books?id=161QAAAAMAAJ
http://plv.mpi-sws.org/scfix/paper.pdf
https://www.microsoft.com/en-us/research/publication/make-multiprocessor-computer-correctly-executes-multiprocess-programs/
https://www.microsoft.com/en-us/research/publication/make-multiprocessor-computer-correctly-executes-multiprocess-programs/
https://www.microsoft.com/en-us/research/publication/make-multiprocessor-computer-correctly-executes-multiprocess-programs/
https://books.google.de/books?id=kOjzvQAACAAJ
https://books.google.de/books?id=kOjzvQAACAAJ
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2643.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2643.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2643.html
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2016/p0098r1.pdf
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2016/p0098r1.pdf
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2016/p0190r2.pdf
http://www.open-std.org/JTC1/sc22/wg21/docs/papers/2016/p0190r2.pdf

	Abstract
	1 Introduction
	2 Motivation for Memory Models
	3 C++98
	4 C++11
	4.1 Atomics
	4.2 Memory Ordering Constraints
	4.3 Fences
	4.4 Allowed reorderings
	4.5 Compare-and-swap

	5 C++14
	5.1 Prohibiting Out-of-Thin-Air Reads

	6 C++17
	6.1 Discouriging Consume Semantics

	7 C++20
	7.1 Repairing Sequential Consistency

	8 Memory Locations
	9 Atomic vs. Volatile
	10 Hardware implementation
	11 Conclusion
	References

